Exercise 10

import os

import polars as pl

import pandas as pd

import statsmodels.api as sm

from sklearn.model selection import train test split
import matplotlib.pyplot as plt

import seaborn as sns

import bambi as bmb

import arviz as az

import numpy as np

from statsmodels.stats.outliers influence import variance inflation factor

# Load data
sl data = pl.read parquet(os.path.join('data', 'soft launch.parquet'))
loyal data = pl.read parquet(os.path.join('data', 'loyalty.parquet'))

# Standardize brand names
brand names = {
'JIF': 'Jif', 'Jiff': 'Jif',
'SKIPPY': 'Skippy', 'Skipy': 'Skippy', 'Skipp': 'Skippy',

'Peter Pan': 'PeterPan', 'Peter Pa': 'PeterPan',
"Harmon's": 'Harmons',

}

pb _data = (

sl data

.with columns ([
pl.col('brand').cast(pl.Utf8).replace(brand names).alias('brand")

1)

.drop nans(['units', 'sales'l])

. remove (

(pl.col('brand') == "None") | (pl.col('loyal') == "None") |
(pl.col('texture') == "None") | (pl.col('size') == "None")

)

.with columns([
pl.col('price').cast(pl.Float64).alias('price'),
pl.col('loyal').cast(pl.Int64).alias('loyal'),
pl.col('promo').cast(pl.Int64).alias('promo")

1)

.unique()

.filter(pl.col('units') > 0)

.select('customer _id', 'units', ‘'brand', ‘'coupon', 'ad', 'texture',

'size', 'price')



)

loyal data = (
loyal data
.drop(['loyal', 'units'l])
.unique() #One duplicate customer id

#Combine pb data and loyal data
pbloyal data = pb _data.join(loyal data, on="customer id", how="inner")
pbloyal data pbloyal data.drop("customer id")

# Design matrix and outcome

X = pbloyal data.select(pl.exclude('units"'))

y = pbloyal data.select('units")

# Train-test split

X train, X test, y train, y test = train test split(

X, y, test size=0.2, random state=42

# Transform y

y train = (
y train
.with columns((pl.col('units') + 1).log().alias('log units'))
.select('log units"')
.to_pandas()
)
y train = y train['log units'] # convert to Series
# Transform X
X train = (
X _train
.with columns((pl.col('price') + 1).log().alias('log price'))
.with columns((pl.col('avg spend') + 1).log().alias('log avg spend'))
.with columns((pl.col('points') + 1).log().alias('log points'))
.to_dummies(columns=['brand', 'texture', 'size', 'gender', ‘'email'],
drop first=False)
.select(pl.exclude('price', 'avg spend', 'points', 'brand Jif',
‘texture_Smooth', 'size 16', 'gender M', 'email No'))

.to _pandas()
)

# Add constant
X train = sm.add constant(X train)

# Fit model
fit 01 = sm.0LS(y train, X train).fit()



# Get fitted values and residuals
fitted = fit 01.fittedvalues
residuals = fit 01.resid

# Histogram of Residuals
plt.figure(figsize=(8,6))
sns.histplot(residuals, kde=True, bins=30, color="steelblue")

plt.title("Histogram of Regression Residuals")
plt.xlabel("Residuals")
plt.ylabel("Frequency")

plt.show()

plt.figure(figsize=(8,6))
sns.scatterplot(x=fitted, y=residuals, alpha=0.5)

# Add horizontal line at 0
plt.axhline(0®, color="red", linestyle="--")

# Labels and title
plt.xlabel("Fitted values")
plt.ylabel("Residuals")
plt.title("Residuals vs. Fitted")
plt.show()

""ig Save the dffits values
X train['dffits'] = fit 01l.get influence().dffits[0]

fig = plt.figure(figsize = (4, 4))
plt.ylabel("DFFITS (Absolute Values)")
plt.xlabel("Observation Number")
plt.scatter(
X train.index,
np.abs (X train['dffits']),
s =3
)
plt.axhline(
y = 2 * np.sqrt(len(fit 01.params) / len(X train)),
color = 'r',
linestyle = 'dashed'
)
plt.show()""" #This plots correctly but throws an error that prevents the
other plots from loading

#Partial regression plot
fig = sm.graphics.plot partregress grid(fit 01, fig=plt.figure(figsize=(12,
10)))



fig.tight layout(pad=1.0)
plt.show()

#QQ Plot

sm.qgplot(fit 01.resid, line='s")
plt.title('QQ Plot of Residuals')
plt.show()

# Calculate VIF for each predictor
vif data = pd.DataFrame({
"feature": X train.columns,
"VIF": [variance inflation factor(X train.values, i)
for 1 in range(len(X train.columns))]

})
# Sort by VIF

vif data = vif data.sort values(by="VIF", ascending=False)
print(vif data)
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QQ Plot of Residuals
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0 const 6517.788366
12 log price 104.991965
1 brand Harmons 90.464005
7 size 12 19.510049
4 coupon 6.348390
3 brand Skippy 4.849947
2 brand PeterPan 4.707939
9 gender F 1.059636
10 gender Other 1.054915
11 email Yes 1.022872
5 ad 1.016537
6  texture Chunky 1.016422
14 log points 1.015901
13  log avg spend 1.011728
8 age 1.005256

We did all the same transforms that were in the previous pb dataset (log transform price; removing
loyalty, promo, and sales; normalizing brand names; etc.). With the loyalty dataset, we removed
the loyal column since it was a constant value, and we removed the units and customer_id columns
since they were duplicates from the other dataset. We did a log transform on avg_spend and
points, and we created dummy variables for gender and email. The histogram of residuals for the
combined dataset appears more normal than the standalone pb dataset. Additionally, the QQ plot
is fitted more to the line and the plot of residuals and fitted values still has a clouded shape. The
DFFITS and partial regression plot revealed outliers, but these were naturally occurring values
(i.e. some customers spend a lot and have a lot of points), so they were not removed.



#Repeating the transforms from X train and y train onto X test and y test

# Transform y
y test = (
y test

.with columns((pl.col('units') + 1).log().alias('log units'))
.select('log units"')

.to _pandas()
)

y test = y test['log units']

# Transform X
X test = (
X test

# convert to Series

.with columns((pl.col('price') + 1).log().alias('log price'))
.with columns((pl.col('avg spend') + 1).log().alias('log avg spend'))
.with columns((pl.col('points') + 1).log().alias('log points'))

.to_dummies(columns=['brand', 'texture', 'size', 'gender', ‘'email'],
drop first=False)

.select(pl.exclude('price', 'avg spend', 'points', 'brand Jif',
‘texture_Smooth', 'size 16', 'gender M', 'email No'))

.to pandas()
)
# Add constant
X test = sm.add constant(X test)
# Fit model
fit 02 = sm.0OLS(y test, X test).fit()
print(fit 02.summary())

OLS Regression Results
Dep. Variable: log units R-squared: 0.869
Model: OLS Adj. R-squared: 0.860
Method: Least Squares F-statistic: 96.79
Date: Tue, 30 Sep 2025 Prob (F-statistic): .80e-82
Time: 18:15:53 Log-Likelihood: 140.72
No. Observations: 219 AIC: -251.4
Df Residuals: 204 BIC: -200.6
Df Model: 14
Covariance Type: nonrobust
coef std err t P>|t] [0.025

0.975]
const 1.8019 0.864 2.086 0.038 0.099
3.505



brand Harmons -0.1933 0.214 -0.904 0.367 -0.615
0.228

brand PeterPan -0.2258 0.088 -2.569 0.011 -0.399

-0.052

brand Skippy -0.0882 0.057 -1.536 0.126 -0.201

0.025

coupon 0.2769 0.057 4,828 0.000 0.164

0.390

ad 0.0731 0.022 3.295 0.001 0.029

0.117

texture Chunky -0.1611 0.019 -8.422 0.000 -0.199

-0.123

size 12 -0.0715 0.101 -0.707 0.480 -0.271

0.128

age -0.0076 0.001 -10.529 0.000 -0.009

-0.006

gender F 0.0230 0.019 1.227 0.221 -0.014

0.060

gender Other 0.0850 0.050 1.707 0.089 -0.013

0.183

email Yes 0.0120 0.020 0.592 0.554 -0.028

0.052

log price -1.1219 0.440 -2.549 0.012 -1.990

-0.254

log avg spend 0.4329 0.023 18.604 0.000 0.387

0.479

log _points 0.0026 0.008 0.326 0.745 -0.013

0.018

Omnibus: 0.999 Durbin-Watson: 2.073
Prob (Omnibus) : 0.607 Jarque-Bera (JB): 0.950
Skew: -0.160  Prob(JB): 0.622
Kurtosis: 2.963 Cond. No. 5.01e+03
Notes:

[1] Standard Errors assume that the covariance matrix of the errors is
correctly specified.

[2] The condition number is large, 5.01e+03. This might indicate that there
are

strong multicollinearity or other numerical problems.

This is what we get for the testing dataset



.with columns((pl.col('units') + 1).log().alias('log units'))
.select('log units')

.to_pandas()

)
y = y['log units'] # convert to Series

# Transform X
X = (
X

.with columns((pl.col('price') + 1).log().alias('log price'))
.with columns((pl.col('avg spend') + 1).log().alias('log avg spend'))
.with columns((pl.col('points') + 1).log().alias('log points'))

.to_dummies(columns=['brand', 'texture', 'size', 'gender', ‘'email'],
drop_first=False)

.select(pl.exclude('price', 'avg spend', 'points', 'brand Jif',
‘texture Smooth', 'size 16', 'gender M', 'email No'))

.to_pandas()
)
# Add constant
X = sm.add constant(X)
# Fit model
fit 03 = sm.0LS(y, X).fit()
print(fit 03.summary())

OLS Regression Results
Dep. Variable: log units R-squared: 0.867
Model: OLS Adj. R-squared: 0.866
Method: Least Squares F-statistic: 504.9
Date: Tue, 30 Sep 2025 Prob (F-statistic): 0.00
Time: 18:15:53 Log-Likelihood: 660.71
No. Observations: 1095 AIC: -1291.
Df Residuals: 1080 BIC: -1216.
Df Model: 14
Covariance Type: nonrobust
coef std err t P>|t] [0.025

0.975]
const 1.0627 0.334 3.182 0.002 0.407
1.718
brand Harmons -0.0116 0.084 -0.139 0.889 -0.176
0.152
brand PeterPan -0.1933 0.034 -5.612 0.000 -0.261

-0.126
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brand Skippy -0.0485 0.023 -2.074 0.038 -0.094
-0.003

coupon 0.3288 0.023 14.275 0.000 0.284

0.374

ad 0.0852 0.010 8.650 0.000 0.066

0.104

texture_ Chunky -0.1806 0.008 -21.534 0.000 -0.197

-0.164

size 12 0.0244 0.040 0.612 0.541 -0.054

0.102

age -0.0084 0.000 -24.954 0.000 -0.009

-0.008

gender F -0.0034 0.008 -0.415 0.678 -0.020

0.013

gender Other 0.0169 0.022 0.774 0.439 -0.026

0.060

email Yes 0.0129 0.009 1.424 0.155 -0.005

0.031

log price -0.7284 0.171 -4.249 0.000 -1.065

-0.392

log _avg spend 0.4413 0.010 42.790 0.000 0.421

0.462

log points 0.0014 0.003 0.419 0.675 -0.005

0.008

Omnibus: 0.546 Durbin-Watson: 1.991
Prob (Omnibus) : 0.761 Jarque-Bera (JB): 0.628
Skew: 0.014 Prob(JB): 0.730
Kurtosis: 2.886 Cond. No. 4.28e+03
Notes:

[1] Standard Errors assume that the covariance matrix of the errors is
correctly specified.

[2] The condition number is large, 4.28e+03. This might indicate that there
are

strong multicollinearity or other numerical problems.

This is what we get for the full dataset.

Here are the frequentist interpretations of the parameters:

brand_Harmons - Based on OLS interval estimates, 95% of such intervals will contain the true
value of the parameter, such that we are 95% confident that choosing Harmons brand peanut
butter changes the number of units sold between -16.1% and +16.4%, relative to Jif peanut butter,
holding all other variables fixed. This is not statistically significant.

brand_PeterPan — Based on OLS interval estimates, 95% of such intervals will contain the true
value of the parameter, such that we are 95% confident that choosing PeterPan brand peanut

11



butter changes the number of units sold between -23.0% and -11.8%, relative to Jif peanut butter,
holding all other variables fixed. This is statistically significant.

brand_Skippy — Based on OLS interval estimates, 95% of such intervals will contain the true
value of the parameter, such that we are 95% confident that choosing Skippy brand peanut butter
changes the number of units sold between -9.0% and -.03%, relative to Jif peanut butter, holding
all other variables fixed. This is statistically significant.

coupon - Based on OLS interval estimates, 95% of such intervals will contain the true value of the
parameter, such that we are 95% confident that having a coupon increases the number of units
sold between +32.8% and +45.4%, holding all other variables fixed. This is statistically significant.

ad — Based on OLS interval estimates, 95% of such intervals will contain the true value of the
parameter, such that we are 95% confident that having an ad increases the number of units sold
between +6.8% and +11.0%, holding all other variables fixed. This is statistically significant.

texture_Chunky — Based on OLS interval estimates, 95% of such intervals will contain the true
value of the parameter, such that we are 95% confident that having a chunky texture decreases
the number of units sold between -17.9% and —15.1%, relative to smooth peanut butter, holding
all other variables fixed.

size_12 — Based on OLS interval estimates, 95% of such intervals will contain the true value of the
parameter, such that we are 95% confident that having a 12-0z jar increases the number of units
sold between -5.3% and +10.7%, relative to 16-0z peanut butter, holding all other variables fixed.
This is not statistically significant.

age — Based on OLS interval estimates, 95% of such intervals will contain the true value of the
parameter, such that we are 95% confident that a one unit increase in age will change the number
of units sold between -1.0% and —0.7%, holding all other variables fixed. This is statistically
significant.

gender_F - Based on OLS interval estimates, 95% of such intervals will contain the true value of
the parameter, such that we are 95% confident that being a female will change the number of units
sold between -1.8% and 6.2%, relative to male customers, holding all other variables fixed. This is
not statistically significant.

gender_Other — Based on OLS interval estimates, 95% of such intervals will contain the true value
of the parameter, such that we are 95% confident that being a gender other than male or female
will change the number of units sold between —12.5% and 4.7%, relative to male customers, holding
all other variables fixed. This is not statistically significant.

email Yes — Based on OLS interval estimates, 95% of such intervals will contain the true value
of the parameter, such that we are 95% confident that receiving Harmons emails will change
the number of units sold between -3.5% and 5.0%, relative to male customers, holding all other
variables fixed. This is not statistically significant.
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price - Based on OLS interval estimates, 95% of such intervals will contain the true value of the
parameter, such that we are 95% confident that a 1% change in price changes the number of units
sold between -225.6% and —45.9%, holding all other variables fixed. This is statistically significant.

avg_spend - Based on OLS interval estimates, 95% of such intervals will contain the true value
of the parameter, such that we are 95% confident that a 1% change in average spend changes the
number of units sold between 40.5% and 50.5%, holding all other variables fixed. This is statistically
significant.

avg_spend - Based on OLS interval estimates, 95% of such intervals will contain the true value
of the parameter, such that we are 95% confident that a 1% change in points changes the number
of units sold between -1.6% and 1.4%, holding all other variables fixed. This is not statistically
significant.

#profit function used in expected loss
def profit(log price, log units, cost, scale):
log cost = np.log(cost)
log profit = log units * (log price - log cost)
profit = np.exp(log profit) * scale
return profit

X = X.drop(columns=['age', 'log avg spend', 'gender F', 'gender Other',
'log points', 'email Yes'])
fit 04 = sm.0LS(y, X).fit()

# Construct a new design matrix for prediction
X new = pl.DataFrame({
'‘brand Harmons': [1, 1, 1, 1, 1, 1],
‘brand PeterPan': [0, 0, 0, 0, 0, O],
'brand Skippy': [0, 0, 0, 0, 0, O],
‘coupon': [0, 1, 0, O, 1, O],
‘ad': [0, 0, 0, 1, O, 1],
'texture Chunky': [0, 0, 0, 0, 0, O],
'size 12': [0, 0, 0, 0, 0, O],
‘log price': [3.50, 3.50, 3.50, 4.0, 4.0, 4.0],
'constant': [1, 1, 1, 1, 1, 1]
}).with _columns(
pl.col('log price').log().alias('log price')
) .to _pandas()

# Confidence and prediction intervals
fit 04.get prediction(X new).summary frame(alpha=0.05)

# Get preditions for X new
fr pred = fit 04.predict(X new)

# Calculate profit for each action
fr_pred['profit'] = profit(
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log price = X new['log price'],
log units = fr pred,

cost = 1.50,

scale = 10_000

# Average across actions
print(np.mean(fr_pred['profit']))

82303.06166047683

For our predictions, we created a table with six rows:
-Harmons Peanut Butter at $3.50

-Harmons Peanut Butter at $3.50 with a coupon
-Harmons Peanut Butter at $3.50 with an ad
-Harmons Peanut Butter at $4.00

-Harmons Peanut Butter at $4.00 with a coupon
-Harmons Peanut Butter at $4.00 with an ad
Predictions:

Row 1 — Based on OLS interval estimates, 95% of such intervals will contain the true value of the
parameter, such that we are 95% confident that pricing Harmons peanut butter at $3.50 will lead
to a total sale between $3.53 and $14.33.

Row 2 — Based on OLS interval estimates, 95% of such intervals will contain the true value of the
parameter, such that we are 95% confident that pricing Harmons peanut butter at $3.50 will lead
to a total sale between $3.66 and $13.59 units.

Row 3 — Based on OLS interval estimates, 95% of such intervals will contain the true value of the
parameter, such that we are 95% confident that pricing Harmons peanut butter at $3.50 will lead
to a total sale between $3.53 and $14.33.

Row 4 — Based on OLS interval estimates, 95% of such intervals will contain the true value of the
parameter, such that we are 95% confident that pricing Harmons peanut butter at $4.00 will lead
to a total sale between $6.02 and $20.33.

Row 5 — Based on OLS interval estimates, 95% of such intervals will contain the true value of the
parameter, such that we are 95% confident that pricing Harmons peanut butter at $4.00 will lead
to a total sale between $3.81 and $13.73.

Row 6 — Based on OLS interval estimates, 95% of such intervals will contain the true value of the
parameter, such that we are 95% confident that pricing Harmons peanut butter at $4.00 will lead
to a total sale between $6.02 and $20.33.
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From our analysis, it looks like providing a coupon leads to a smaller sale, and increasing the
price from $3.50 to $4.00 grants more profit, even with the decreased correlation between price
and units. The mean predicted profit from our output is $82,303, which is very promising. "
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